Categorias
Novos produtos
Cortadora de fibra óptica de gran diámetro LDC-100 * Aplicable a fibras de 80 μm ~ 600 μm de diámetro de revestimiento *Bomba de vacío ranura en V conveniente para poner fibra *Cuchilla duradera, vida útil más de 20000 veces *Almacenamiento de datos 4000 grupos * Menú GUI fácil de usar, fácil de operar Mais
S-22 Multi-Core Fiber Fusion Splicer O 1º S plicer de F usion F usion de Múltiplos Núcleos Totalmente Automático na China Mais
Polarização Manutenção (PM) de Fibra de Fusão, Junção de S-12 * Núcleo para núcleo de alinhamento, baixa perda de emenda * Endview e Perfil de observação e de alinhamento * Arco de calibração automática e emendas PM * fibra de 45 e 90 graus de alinhamento Mais
S-37 LDF Specialty Fiber Fusion Splicer SHINHO S-37 é o modelo mais recente que desenvolvemos, pode emendar o diâmetro do revestimento de fibra de 125 a 400μm com baixa perda de emenda. Equipamos a máquina com 3 suportes de fibra diferentes e 2 pares de eletrodos sobressalentes. Mais
núcleo para core splicer de fusão de fibra de alinhamento x 900 splicer de fusão de seis motores, núcleo real para a tecnologia de alinhamento de núcleo. 6s splicing, 16s heating, identificam os tipos de fibra automaticamente. usado para projetos de wan / man / telecomunicação. Mais
splicer robusto multi-função da fusão do arco s16 design industrial robusto, anti-choque, à prova de poeira e à prova d'água. suporte multifuncional para fibra nua, patch cords, cabo drop etc. emenda rápida e aquecimento, calibração automática de arco. Mais
Pelacables térmico de fibra de cinta SHINHO X-18 El pelacables térmico Shinho X-18 es un pelacables térmico manual recientemente desarrollado, especialmente diseñado para el pelado térmico no destructivo de la cubierta del cable plano de hasta 12 fibras. Una herramienta buena y confiable para trabajos de empalme de fibra de cinta. Mais
Cuchilla de fibra óptica de alta precisión X-50D Tamaño pequeño y peso ligero, fácil de operar. Alta precisión y rendimiento estable. Más de 48000 tiempos de vida útil de la hoja, longitud de fibra cortada de 5 a 20 mm. material de alta calidad Mais
How Fiber Core & Cladding Sizes Shape High-Power Fiber-Laser Performance
In high-power fiber lasers—key in medical, industrial, and scientific applications—the design of the fiber’s core and cladding dimensions is instrumental. These structural parameters govern power handling, beam quality, efficiency, and thermal performance. Here’s how.
Increased Power Threshold & Reduced Nonlinear Effects
Enlarging the fiber core reduces optical intensity, raising the damage threshold and suppressing nonlinear effects like stimulated Brillouin and Raman scattering—crucial for power scaling. Modern lasers leverage larger cores to push into kilowatt regimes.
Trade-off: Multimode Propagation
However, bigger cores often support multiple modes, lowering beam quality. In contrast, single-mode fibers with core diameters around 8–10 µm and cladding of ~125 µm preserve clean beam profiles, albeit at restricted power capacities.
Double-Clad Fibers for Efficient Pumping
High-power lasers use double-clad fibers, where an inner cladding guides pump light (from lower-brightness sources) around a doped core. This architecture allows efficient cladding pumping, enabling high output powers while maintaining beam quality.
Cladding Shape Matters
Non-circular inner cladding shapes (e.g., offset or rectangular) enhance pump absorption by directing light more thoroughly through the core. Circular claddings tend to waste pump light by allowing many rays to bypass the core.
Cladding Size Trade-offs
A larger cladding allows coupling of more pump power, but absorption efficiency drops with the square of cladding diameter—requiring longer fibers—which can invite nonlinear effects. Designers must balance this trade-off.
Large-Mode-Area (LMA) Fibers
LMA fibers increase core diameter while maintaining single-mode operation by lowering numerical aperture or employing mode-suppressing techniques (like refractive-index engineering or coiling). This design allows high-power output with diffraction-limited beam quality.
Tapered Double-Clad Fibers (T-DCF)
T-DCF structures transition smoothly along the fiber from a narrow core to a wide multimode end. Light entering in single-mode at the narrow end remains in the fundamental mode even at the wide end, combining high-beam quality with increased power capacity.
Record-Setting Examples
Some tapered fibers feature core diameters up to 200 µm with numerical aperture ~0.11, enabling distortion-free amplification of 60 ps pulses with high peak energy.
Design Element |
Key Role & Trade-offs |
Core Size |
Larger core = higher power, reduced nonlinearity; but may degrade beam quality unless controlled. |
Cladding Size/Shape |
Critical for pump coupling efficiency and thermal load; non-circular shapes boost absorption. |
LMA Fibers |
Balance power with beam quality through mode control techniques. |
Tapered Fibers |
Achieve high power and beam fidelity in one structure—ideal for ultrafast or high-power systems. |
The delicate interplay between core and cladding dimensions—combined with smart geometric and refractive-index engineering—drives the evolution of fiber lasers. Designs like LMA and T-DCF fibers empower lasers to achieve unprecedented power while maintaining beam purity—paving the way for advanced medical devices, precision instrumentation, and beyond.
Próxima :
Fiber laser working method© Copyright: SHINHO OPTICS LIMITED Todos os direitos reservados.